If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-40=10x+15
We move all terms to the left:
x^2-6x-40-(10x+15)=0
We get rid of parentheses
x^2-6x-10x-15-40=0
We add all the numbers together, and all the variables
x^2-16x-55=0
a = 1; b = -16; c = -55;
Δ = b2-4ac
Δ = -162-4·1·(-55)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{119}}{2*1}=\frac{16-2\sqrt{119}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{119}}{2*1}=\frac{16+2\sqrt{119}}{2} $
| (4)*((2)+2)=x | | h+4h-5h+4h=16 | | 3r-3r+4r-3=1 | | -5x+13=1/6x+17 | | 19k-14k-2k=9 | | 5t-t=16 | | 19b-14b-b-3=17 | | 6h+3h-6h-2h+4h=5 | | 4d+2d-6d+2d+d=18 | | 2p-2p+3p=9 | | 9x+10=7x-4 | | 9u+u-3u-6u=12 | | 135=5x+35 | | 2/5(p=15)-1/3(9+6P)+4/5P | | 135=3x+6 | | x-3÷7=12 | | x+6÷4=-7 | | 45=5(2x+1) | | 8x4-6=6x7-4 | | 8x4+6=6x7-4 | | 1/8(x-2)-1/6(3x+1)=3/4x-2 | | 10-2(3-2x=0 | | 3t−18=4(−3−43t) | | 34=−6e−35 | | 2.5=0.0018x | | 9z+1=9z-1 | | 14/9(x+23/28)=11 | | 9x-9=4x+8 | | 4x+3+9x+13=120 | | (1-y)(5y+8)=0 | | 2-2(7+5r)=-6(r-8) | | X^3+x^2-33x-45=0 |